
N91-20023

1990 NASA/ASEE SUMMER FACULTY FELLOWSHIP PROGRAM

JOHN F. KENNEDY SPACE CENTER

UNIVERSITY OF CENTRAL FLORIDA

p ,

FORMAL SPECIFICATION OF HUMAN-COMPUTER INTERFACES

PREPARED BY:

ACADEMIC RANK:

UNIVERSITY AND DEPARTMENT:

NASA/KSC

DMSION:

BRANCH:

NASA COLLEAGUE:

DATE:

CONTRACT NUMBER:

Dr. Brent Aucrnhcimcr

Associate Professor

California State University - Fresno

Department of Computer Science

Data Systems

Real Time Systems

Mr. Los Rostosky

August 10, 1990

University of Central Florida

NASA-NGT-60002 Supplement: 4



Acknowledgements

The support ofmy NASA colleaguesOscar Brooks, SteveBryan, BillDrozdick,Linda Koch,

Les Itostosky,BillSloan,Lynn Svedin,and Larry Wilhelm isgratefullyacknowledged. Thanks

alsoto Steve Eckmann and R.ichzrdKemmerer ofthe Universityof California,Santa Barbara

forprovidinghelpfulcomments and ideas.

Abstract

This report describes a high-level formal specification of a human-computer interface. A

typical window manager is modeled. Previous work is reviewed and the ASLAN specification

language is described. Top-level specifications written in ASLAN for a library and a multiwindow
interface are discussed.

2



I

1.1

1.2

1.3

1.4

i.5

1.6

II

II.1

II.2

II.3

III.

III.l

III.2

HI.3

III.4

III.5

III.6

III.7

III.8

IH.8.1

III.8.2

III.8.3

III.8.4

III.8.5

II1.8.6

III.8.7

III.8.8

Iv

Table of Contents

Introduction

Organization of the Paper

Specification and Verification Terminology
Previous Work

Formal Techniques and the Development of User Interfaces

Two Views of Specifications

Testing vs. Proving Specifications

Formal Specification

The Aslan Specification Language

The Aslan Approach

A Specifier-friendly Feature

Specification of A Multiwindow User Interface
Overview

Types
Constants

State Variables

Definitions (Macros)
Initial Conditions

Critical Correctness Requirements
State Transitions

Window Closing (Iconifying)

Window Opening
Window Destruction

Window Creation

Shifting Input Focus

Moving Windows

Window Resizing

Window Restacking

Concluding Remarks

3



!. !_tro_uetion

1.1 Organization of the Paper

This paper documents an attempt to formally specify a multiwindow user interface. The

paper is organized as follows:

Section I briefly reviews the foundation laid in last summer's work and discusses motiva-

tions and expected results of using formal specification techniques on user interfaces. Section

III introduces the ASLAN formal specification language through the example in Appendix A.

Section III is a detailed look at an abstr_ct spe_fication of a typical multiwindow interface.

The formal specification discussed in Section III is in Appendix B. Finally, Section IV contains

concluding remarks and recommendations.

1.2 Specification and Veriflcatlorl Terminology

Specifications are statements about the functionality of a system. Specifications express

what is a system is to accomplish, not how it is to do it. In this paper, formal specifications

are assertions about the behavior of a system. Critical correctness criteria are assertions that

the specification and all refinements and implementations are to satisfy. Formal verification

techniques demonstrate that implementations satisfy their specifications. In addition, it is

useful to show that specifications meet their critical correctness criteria. This is sometimes

called design verification. Neumann explains [12]:

Formal verification has often been talked about as a technique for demonstrating

consistency between code and assertions about that code, in some cases between

code and specifications. Somewhat less popular has been the easier notion of using
formal verification to demonstrate that a set of formal specifications is consistent

with its formally axiomatized requirements, i.e., carrying out design verification.

1.3 Previous Work

This report describes a continuation of work on formalisms for user interface specification

and design described in [1]. Th_at work examined several recent research results in human-

computer interaction (HCI) that may be applicable to NASA applications. One of the results

examined was the formal specification of direct manipulation user interfaces for a secure military

message system [7,8]. .... _ .....

[1] also contains an introduction to formal specification aud verification including objections

to the approach and reasonable expectations. It was recommended that a pilot study using

formal techniques on a small, well-defined piece of a user interface be done. The subsystem

to be specified should have dear, high-level ¢orrect_ness prope_ies that must be met. The

specification given in Appendix B of this paper is the portion of a user interface that manipulates

windows. The correctness property that must be maintained is that users are not allowed to

1The information in II.2 and Appendix A is based on a portion of a paper by the author and Daniel Stearns,

"Using the ASLAN specification language in undergraduate software engineering courses, m submitted to Computer

Science Education, July 1990

4



move, close,or resizecertainwindows. This correctnessproperty was derivedfrom current

interfaceprototypesdevelopedat NASA KSC.

Using formalspecificationtechniquesiscostly.Benefitsare realizedwhen thereare readily

identifiable,criticalcorrectnesspropertiesthat must hold. This is the case for portionsof

proposed interfacesto shuttleand space stationsoftware.

Further, it is not necessary to carry out formal specification and verification to their full

extent to realize benefits. Finding an appropriate level of formality and analysis can result in

systems that users can have a high degree of confidence in. To summarize [1, section IV.2.2]:

The general goal is to lower expectations for formal specification - the goal isn't

necessarily provably correct software - but to specify important functionality and

correctness criteria in a way that is reviewable by software engineers and integrates

usefully in other software development efforts.

1.4 Formal Techniques and the Development of User Interfaces

As noted in [1], there is some controversy about the usefulness of formal specification and

verification techniques in general. Because modern interfaces are visually complex and becoming

more aural, some HCI researchers believe that prototyping and user interface management

system (UIMS) are the correct approach to interface specification and development. Fischer is

a critic of formal specification of interfaces [6, p. 50,51]:

Static specification languages have little use in HCI software design. First, de-

tailed specifications do not exist. Second, the interaction between a system and its

user is highly dynamic and aesthetic, aspects that are difficult, if not impossible, to

describe with a static language .... A prototype makes it much easier and produc-

tive for designers and users to cooperate because users do not have to rely on written

specifications, which do not indicate an interface's qualities .... Validation and ver-
ification methods from other software domains have limited use in HCI. Formal

correctness is crucial, but it is by no means a sufficient measure of the effectiveness

and success of an HCI system.

Fischer's statements are true for most interface development efforts. Formal techniques

aimed at low level or aesthetic portions of user interfaces may not be productive.

However, for critical aspects of NASA interfaces, such as alarm areas, critical correctness

requirements are apparent and easily expressed. By using techniques employed in the specifi-

cation of secure systems, formal specification becomes a valuable approach.

Further, it is possible to combine formal specifications of functionality with usability spec-

ifications. Carrol and Rosson have studied the design process and recommend an iterative

approach of developing and integrating functionality and usability specifications [5, p. 1]:

Much has been said about this "usability" problem regarding current interface

designs. Less has been said about how-tosolve the problem .... we develop an ap-

proach to the problem based on usability specifications: precise, testable statements



of performance goals for typical users carrying out tasks typical of their projected

use of the system.

1.5 Two Views of Specifications

Most specification efforts target one of two goals: an executable specification (prototype

system), or a proof that a specification meets critical correctness requirements ("design verifi-

cation"). HCI specification are usually developed with the intent of having a prototype system

that can be "checked for certain undesirable properties" [8, p. 211]. Because these speci-

fications are to result in realistic prototypes, it is necessary to specify low-level events such

as mouse clicks and beeps. Not surprisingly, it is not feasible to combine a huge quantity of

implementation details with design verification of the specification.

The approach explored in this paper is to write abstract specifications and critical correct-

ness requirements for a portion of a user interface without getting bogged down in implemen-

tation details. High-level specifications have been very successful in the field of secure systems.

The formal specifications for these systems are shown to he consistent with their critical cor-

rectness criteria without becoming bogged down in implementation details. For example, in a

short, high-level specification, Kemmerer shows fundamental flaws in a cryptosystem [10].

Although Jacob focuses on executable specifications and prototyping, he briefly discusses

extensions to his techniques [8, p. 237]:

In designing a secure message system, it is desirable to prove assertions about

the security of the system formally. Such proofs are usually based on a formal

specification of the system (with the proviso that the final software and hardW_e

correctly implement the specification). This approach has not generally been used

at the user interface level, but, if one had a formal specification of the user interface,

it would be possible to provide proofs about the user interface.

1.6 Testing vs. Proving Specifications

A common and persistent criticism of formal specification and verification is that the quan-

tity of proofs that must be done is overwhelming, a formal specification and statement of

correctness, it is possible to gain insights into the system and confidence in the specification

without performing proofs. The informal analysis of a formal specification can be a valuable

technique for communication between software engineers.

More formally, symbolic execution tools have been developed [11]. Specifications can then

be tested against correctness requirements. Testing specifications allows software engineers to

play what-if games with the specification and may result in the discovery of system states that

do not satisfy the correctness requirements.

These tools have been successfully used in the development of secure systems. Kemmerer

explains the use of the Inatest tool on a cryptosystem specification [10, p. 453]:

With the Inatest tool, it is possible to introduce assumptions about the system

interactively, execute sequences of transforms, aud check the results of these execu-

6



tions. This provides the user with a rapid prototype for testing properties of the

cryptographic fac_Jties ...

J



II. Formal Specification

ILl The Asian Specification Language

Software engineers' lack of exposure to formal specification systems is particularly disturbing

in light of increasing dependence on critical software systems. Neumann describes examples of

problems with s_pecifications in four application areas: human safety, reliability, security, and

user interfaces [12]. Neumann concludes (emphasis _ded):

There are many contributionsthat good softwareengineeringpracticecould

have made t.othe preventionor minimizationof these and many other problems.

In particular_the sound use ofsystem structuring,specificationlanguagescapable

of meaningful abstraction, and rigorou# analysis oJ specifi__tions could a__ have had

significant effects.

The ASLAN formalspecificationlanguageisapartialsolutiontothe above problem. Software

engineerscan use ASLAN to formallyspecifycomplex systems and develop theirspecifications

through arbitrarylevelsof abstraction.When a specificationispassed through the ASLAN

'VLanguage Processor(ALP), sof.t,w_'_eengineersrece!e a setof correctnessconjectures.

The followingsectionsdescribefeaturesof ASLAN using a specificationof a libraryas an

example. The libraryexample has been usedin many formalspecificationworkshops. A library

specificationwrittenin the InaJo language appearsm [11].

II.2 The ASLAN Approach

The ASLAN language isbuilton firstorder predicatecalculus,Systems being specifiedare

thought ofas being in states,definedby the valuesof the system variables,Logic,_l_assertions

are used to definethe criticalcorrectnessrequirementsthatmust hold in every stateand those

thatmust hold between two consec.utive_tates.The formerare stateinvariants,whilethe latter

are constraintson statetransitions.

To prove that a specificationBatisfiesitsinvariant_d col_strajnts,the ALP genera_teacor-

rectnessconjectures.Correctnessconjecturesare logicalstatements whose proof_ensuresthe

correctnessofthe specificationwith respectto the |n-vari'_tanc]cgnstrajnt.

Appendix A containsa hi_gh-!evelspecificationof a library.Although the libraryco_d be

furtherspecifiedthrough more deta__"ed levelsof specification,only the top-levelspecification

willbe examined here,

The state variables for this system appear in the VARIABLE sect|on of the specific{ttion.

Library is a variable whose type is a collection of Book. At this level, Book is left as an

unspecified type. A state variable Checked_0ut maps each book into the boolean domain,
while Number_0ut maps library users tothe the number of books they have checked out.

The specification contains an initial assertion defining possible starting states of the library.

This assertion states that the libraxy is initially empty_ that no users have books out, and that,
indeed, no books are checked 0u_t.



The library specification contains an invariant assertion to specify the essential properties

that the system must have. The invariant 'states that

• when a book is checked out, it cannot be available. Similarly, an available book cannot

simultaneously be checked out.

• the limit on the number of books checked out by any user is enforced

• no userhas more than one copy of the same book checkedout

Clearly,we want the initialstateofthe system tofulfilltheinvariant.The ALP willgenerate

a logicalimplicationthat

initial -, invariant

The particular correctness conjecture generated is

Library = EMPTY

& FOPALL u: User (Number_Books(u) = 0)

& FORALL b: Book ("Checked_0ut(B))

->

FORALL b:Book( b ISIN Library ->

Checked_0ut(b) & "Available(b)

[ "Checked.0ut(b) & Available(b))

& FORALL u:User (Number_Books(u) <--Book_Limit)

& FORALL u:User,bl, b2:Book(

Checked_0ut.To (u, bl)

_tChecked_0ut.To(u, b2)

& Copy_0f(bl, b2)

-> bl = b2)

It is up to the specifier, possibly with the help of a theorem prover, to prove the above

correctness conjecture.

An empty library is not very interesting. The specification must define how the library can

expand; that is, how the library can change from a current ('old') state to a new state in which

more books are present.

Allowablestatechanges are spedfiedas transitions. An ASLAN transitionconsistsof a

precondition(ENTRY) and a postcondition(EXIT).Transitionsin the libraryexample have only

postconditions.The ALP assumes thatomitted preconditionsare true.

The Add_A_Book transitionallowsthe libraryto expand. Because Add_A.Book does not have

an entry assertion,it can be applied at any time. The exitassertionstatesthe effectthe

application of the transition has on the state variables. It asserts that



• the user adding the book must be a member of the library staff',

• and assuming the user is a staff person and the book isn't already in the library (the

apostrophe is the ASLAN notation for 'old value'),

• the book is added to the library

• the book is not checked out

• and in particular, this book has never been checked out

How can the specifier be assured that the Add_A_Book transition meets the correctness

requirements embodied in the invariant? It must be proved that if the invartant holds in the

current (old) state, and the transition is applied, then the invariant will hold in the new state.

That is,

invariant' & entry' _ exit --+ invariant

Note thatin the antecedent,the invariantand the entry assertionare evaluatedin the old

state.The exitassertionand the consequent are evaluatedin the new state.

ASLAN specificationscan be made up of severallevelsof abstraction.Given a multilevel

specification,the ALP generatesadditionalcorrectnessconjecturesthat ensure that types,

variables,and transitionsare properlyrefined,and that the correctnessrequirementsare met

at every levelof abstraction.Detailsare found in [4].

Ideally,ASLAI_ should be used to specifyincreasinglyconcretelevelsof abstraction.The

resulting specification would be a high level specificat|on defining the system as an abstract

data type, followed by intermediate levels leading to a low level specification close to code level.

In this most detailed specification level, the transitions' entry and exit assertions become the

the pre- and postconditions of programming language level procedures which implement them.

II.3 A Specifier-friendly Feature

Expressions in ASLAN look like first order logic assertions for a simple reason: the techniques

and expressive power of first order logic can be used to prove correctness conjectures.

Unfortunately for specifiers with a programming background, the semantics of first order

logic are not the same as those of procedural programming languages such as Pascal and C.
Consider an alternate version of the Return transition:

TRANSITION Return(B: Book)

EXIT

Checked_0ut'(B) -> Checked_0ut(B) = FALSE

& Number_Books(Responsible'(B)) =

Number_Books(Responsible'(B) - i) ,

I0



The above exit assertion is written in a purely 'logical' form. Recall that the ALP will

construct a correctness conjecture whose proof ensures the invariant holds after the appBcation
of Return:

->

FORALL b:Book (b ISIN Library' ->

Checked.Our'(b) _ "Available'(b)

I "Checked_Our'(b) & Available'(b))

& FORALL u:User (Number_Books'(u) <ffiBook.Limit)

& FCRALL u:User,bl, b2:Book(

Checked.Out_To_(u, bl)

& Checked_Our_To'(u, b2)

Copy_Of(bl, b2)

-> bl = b2)

Checked_Our'(B) -> Checked_Out(B) = FALSE

Number.Books(Responsible*(B)) -

Number.Books(Responsible'(B) - I)

FORALL b:Book (b ISIN Library ->

Checked.Out(b) _ "Available(b)

I "Checked_Out(b) & Available(b))

& FDRALL u:User (Number_Books(u) <= Book.Limit)

FORALL u:User,bl, b2:Book(

Checked_Out_To(u, bl)

& Checked.Out.To(u, b2)

& Copy_Df(bl, b2)

-> bl = b2)

It is a simple paper and pencil exercise to show that the conjecture generated cannot be

proved. In particular,

The new values of Available and Checked.Out_To are mentioned in the consequent in-

variant. Nothing can be proved about the new values of Available and Checked_Out_To.
Neither variable was mentioned in the exit assertion of Return, and the antecedent in-

variant only relates old values of the state variables.

Because the exit assertion was written as a logical implication, we have not specified

what will happen when Checked_Out' (B) is false. In particular, if the book B was not

checked out, the new value of Checked_Out(B) could be true or false. Also, the values of

Checked_Out for books other than B are unspecified!

11



• Similarly,wehavenotspecifiedthenewvaluesof Number.Books for all users not responsi-

ble for the particular book B being returned. In particular, the new value of Number_Books

for such users could be any integer.

These differencesbetween the semanticsof logicand thoseof programming languageshave

caught professionalspecificationwritersby surprise[14].

The ASLAN languageprovidesconstructsthatoperatelikeprogrammers tend tothinklogical

operationsshoulrloperate.Corresponding tologicalimplicationisthe ASLAN IF-THEN-ELSE-FI,

correspondingto disjunctionisthe ALT (alternative)statement,and correspondingto equality

isthe BECOMES statement.Detailsare found in [3,4].

In addition,ASLAN suppliesthe implicit'nochanges'forvariablesmentioned intheinvarlant

and constraint,but not mentioned in a particulartransition.

These languagefeaturesallowspedfiersto writespecificationsina more naturalway. Read-

ersshould compare the Return transitionabove with the versionin the appendix.

Preliminary work on extending ASLAN to facilitatespecificationof real-timesystems is

documented in [2].

12



III. Specification of a Multiwindow User Interface

III.1 Overview

Appendix B contains an ASLAN specification of an interface commonly provided by window

managers running on the X window system [9, 13, 15]. Windows can be created, deleted,

opened, closed, resized, moved, brought to the foreground, and be made the target of user

input.

The specification has one feature not usually found in multiwindow interfaces: dedicated,

reserved ("special") windows that cannot be moved, closed, or covered. Displays proposed for

shuttle ground support software will have such areas.

This specification was written to be an abstract description of the operations provided by a

window manager to a user. Note that pixels and mice, usually associated with such interfaces,

are not mentioned. It is sometimes hard to determine an appropriate level of abstraction

for a top-level specification. A guideline is that the most abstract specification be such that

critical functionality and correctness requirements can be expressed in a form that is readily

understandable and easily manipulable. In addition, top-level specifications should not restrict

possible implementations and refinements.

Although only a top-level specification of the interface is provided, it is clear that more

detailed levels of refinement could introduce implementation details such as pixels and mice.

Each major syntactic unit of the specification will be discussed in turn. Sections III.2

through III.8.8 refer directly to Appendix B. The following lexical convention is used: con-

stants and ASLAN keywords are uppercase, type identifiers begin with uppercase, variables and
definitions are lower case.

III.2 Types

Six unspecified types are declared to represent classes of system objects that require no

elaboration at this level. For example, Processes can be associated with Windows, however at

this level of abstraction it is not important how either is implemented. Further, how windows

look on the screen (their Representations, Sizes, and Locations) are deferred.

The Display_Levels type represents the stacking level of windows on the screen. It is

tempting to define Display_Levels as a synonym for integer. This would restrict possible

implementations. As discussed in ELI.3, it is only necessary that Display_LevelB have a less-

than-or-equal ordering.

The state of a window is a simple enumerated type. The layout of a window is a structure

of three fields: a location, size, and a representation. As discussed in section III.4, windows

have a layout for when they are open, and another layout (an icon) for when they are closed.

Finally, the contents of the current screen is of type Displays - a set of window layouts. The

current display along with current stacking levels for the active windows defines the look of the
screen.

III.3 Constants

Constants are unchanging mappings. For example, INITIAL_0PEN_LAYOUT associates a de-

13



faultlookforwindows opened forprocesses.With INITIAL_CLOSED_LAYOUT and INITIAL_STATE,

the window manager determines the look of a window when it is created for a process.

OVERLAPSis an important relation that maps two layouts to true or false. The intent is that

refinements of OVERLAPSwill check to see if any of the first layout overlaps the second. This

constant relation is useful in determining if windows are on the screen (overlap the BACKGROUND)

and if they would obscure a restricted window.

LESS_0R_EQUALis similar to OVERLAPS.This boolean constant maps window stacking levels.

If Display_Levels is subsequently refined to be the integers, this constant may turn into

nothing more than __.

SPECIAL is a boolean function that determines if a window is restricted. It is made a

constant in this specification so that the mechanisms for making windows restricted or not can

be omitted. It is reasonable that SPECIAL could be changed to be a state variable and state

transitions for its manipulation be added.

III.4 State Variables

The value of the state variables determine the state of the interface. These values are

changed by the application of the state transitions discussed in section III.8.

Windows are created for processes. The mapping of processes to windows is represented in

process. When a process is bound to a window, the window will inherit the initial open and

closed layouts from the process. These layouts (open_layout, closed_layout) can be changed

by the resize and move state transitions. Associated with each window is also a stacking level

display_level.

The layouts currently active on the screen are in display. The window selected to receive

input is determined by the value of inpu'c_focus.

III.5 Definitions (Macros)

ASLAN definitions are macros used to make state transitions more understandable. Eight

definitions are given to represent mundane events such updating the display and changing layout

fields.

to_top_level is interesting because it specifies that the stacking level of its argument is to

be less than all other windows, and that the relationship between other windows should remain

as it was before the argument was made uppermost window.

There are two things to note. First, to_top_level may be restricting future implemen-

tations. It is not necessary for the argument's stacking level to be strictly less than that of

all other windows, just that it be less than the level of all windows in its stack. That is, the

topmost windows of independent stacks on the screen could have the same display_level. It

is an interesting exercise to rewrite the definition to allow this.

Second, although it is specified that the relationships of other windows remains as they were

before the state transkion, it is possible that the value of display_level for each window has

changed! This allows refinements and eventual implementations flexibility in assigning display

levels - any implementation that has the argument window ending up on top, and doesn't

14

V



rearrange the other windows meets this specification.

set_Xocation and set_size manipulate one field of a particular window's current layout.

Care is taken that other fields for this window, and layouts for other windows are unchanged.

The update_display definitions specify the addition and deletion of layouts to the current

display.

111.6 Initial Conditions

The INITIAL assertion describes the state of the interface when the system is first brought

up. An informal reading of the assertion is _nothing is on the screen, and all windows are

inactive, and windows that are created for processes will be on somewhere on the screen."

III.7 Critical Correctness Requirements

The critical correctness requirements are expressed in the IICVARIANT.This assertion is to

be true when the system is started, and continue to hold in every state the system can reach

starting at the initial state and using the state transitions described in III.8. The assertion

consists of three conjuncts. The first says that every layout on the screen has to be associated

with an active window. The second asserts that every current layout must be at least partially
on the screen. The third states that restricted windows are not covered.

III.8 State Transitions

The following subsections describe the eight state transitions. Since none of the transitions

have explicitly stated ENTRYassertions, there are no restrictions on when the transitions can be

applied. This corresponds to typical window managers - it is possible, for example, to attempt

to close windows at any time.

Although there are no restrictions on when the transitions can be applied, it is not always

the case that applying them has any effect on the state of the system. For example, most

window managers will allow a user to close an already dosed window. From the user's view,

there is no change in the state of the display.

The specifications for the state transitions are written with this in mind. The style used is

as follows: an exit assertion is a disjunct of two clauses joined by the ASI, AN ALT operator. The

first clause specifies the effect of the state transition when variables are changed (the closing of

an open window, for example) and the second clause specifies that no variables change.

The ALT operator is logical disjunction augmented by statements specifying that unmen-

tioned state variables do not change. These statements are generated automatically by the

ALP [3, 4].

When reading the transitions it is important to pay careful attention to the use of the

old-vMue operator (apostrophe). The following sections will focus on the first disjunct of each
transition's exit assertion.

III.8.1 Window Closing (Iconifying)

To close a window w, it is necessary that w be open, that it is not a restricted window, that

w's new state is closed (and that the states of other windows are unchanged), that w's open

15



layout is taken off the screen and replaced by its icon, and that the icon not be hidden.

III.8.2 Window Opening

open_window is symmetric to close_window.

III.8.3 Window Destruction

To destroy a window v, it is necessary that w active before the state transition and unused

afterwards, that w is not a restricted window, and that the layout of w be removed from the

screen.

III.8.4 Window Creation

Windows are created for and associated with processes. To create a window for process p it

is necessary that there exists a window w that was inactive before the state transition and will

become active. This window will inherit its initial state and layouts from p. w will be associated

with p, and w's current layout will be added to the display uncovered by other windows or icons.

III.8.5 Shifting Input Focus

This transition assumes that only one window at a time can be the target of user input. It

is a simple transition that checks that only active windows can receive input.

III.8.6 Moving Windows

The move transition looks more complicated than it is. There are two symmetric cases for

when the window to be moved, w, is open and closed. In either case, w cannot be a restricted

window and the current display is modified. If w's state is open then its location is changed,

w must still be on the screen, and w cannot overlap any special windows. The case when w is

closed is symmetric.

III.8.7 Window Resizing

This transition states that only ordinary, open windows can be resized. In addition, a

window cannot be reslzed to overlap a restricted window.

III.8.8 Window Restacking

To bring an active window w to the foreground, the display must be changed, and the act

of bringing w to the foreground must not overlap a restricted window.

16



\__.J

IV. Concluding remarks

• J

This paper has discussed formal specification of user interfaces. The particular approach

taken was to construct an abstract, state-machine model of the interface using the ASLAN

specification language. Emphasis was placed on defining essential functionality and critical

correctness requirements without introducing implementation details.

The resulting specification de_ues the functionality of a typical window manager (Appendix

B). The specification can be the foundation of several further activities:

• The correctness conjectures generated by the ASLAN language processor could be proved.

Successful proofs would show that the specification satisfies its critical correctness criteria.

Failed attempts to prove correctness conjectures have lead to new insights into the system

being specified. Fmled proofs can show misunderstandings in functionality, inconsistency,

and incompleteness. These insights can be especially valuable to software engineers as

they work toward defining essential functionality and correctness of a system.

• The specification can be expanded. It would be useful to refine the top-level specification

into lower, more detailed specifications. A challenge is to refine the specification down

to an implementation level at which objects such as pixels, mouse clicks, and scroll-

bars are used. New techniques would have to be developed to maintain readability and

understandability while handling the amount of detail at low levels.

• The specification could serve as inspiration for a specification of a particular part of the

proposed shuttle/space station ground softwaxe. This is a promising area for further

research. After informal requirements for, say, protected alarm areas on screens are

developed, an effort should be made to formally specify their actions and correctness

requirements.

• The specification could be tested. A symbolic execution tool for ASLAN specifications
should be constructed.

Formal specification of user interfaces is not cost effective for most projects. However, for

highly structured interfaces whose performance is critical (such as the NASA interfaces being

developed) formal specification can play a valuable role in unambiguously defining functionality

and providing confidence in meeting correctness requirements. There is considerable interest in

formal techniques and proofs of correctness among developers of critical interfaces.

17



References

[I]B. Auernheimer. Formalisms for user interfacespecificationand design. In NASA CR-

166837,NASA Kennedy Space Center (October 1989).

[2] B. Auernheimer and R. A. Kemmerer. RT-ASLAN: a specificationlanguage forreal-time

systems. IEEE Transactions on Software Engineering, SE-12, 9 (September 1986).

[3] B. Auernheimer and R. A. Kemmerer. Procedural and nonprocedural semantics of the

ASLAN formal specification language. Proceedings of the nineteenth annual Hawaii in-

ternationaI conference on system sciences (January 1986).

[4] B. Auernheimer and R. A. Kemmerer. ASLAN users manual. Technical report TRCS84-10.

Department of Computer Science, University of California, Santa Barbara (March 1985).

[5] J. Carroll and M. Rosson. Usability specifications as a tool in iterative development. In
Advances in human-computer interaction, vol. 1. H. Hartson, ed. (1985).

[6] G. Fischer. Human-computer interaction software: lessons learned, challenges ahead. IEEE

Software 6, 1 (January 1989).

[7] R. J. K. Jacob. A specification language for direct-manipulation user interfaces. A CM

Transactions on Graphics 5, 4 (October 1986).

[8] R. J. K. Jacob. An executable specification technique for describing human-computer
interaction. In Advances in human-computer interaction, vol. 1. H. Hartson, ed. (1985).

[9] O. Jones. Introduction to the X window system. Prentice-Hall (1989).

[10] R. A. Kemmerer. Analyzing encryption protocols using formal verification techniques.
IEEE Journal on Selected Areas in Communications, 7, 4 (May 1989).

[11] R. A. Kemmerer. Testing formal specifications to detect design errors. IEEE Transactions

on Software Engineering, SE-11, 1 (January 1985).

[12] P. G. Neumann. Flaws in specification and what to do about them. ACM SIGSOFT

Engineering Notes, 14, 3 (May 1989).

[13] O' Reilly & Associates, Inc. X Window System Series, vols. 0-7.

[14] R. Platek and D. Sutherland. The semantics of the Freiertag MLS information flow tool
and its impact on design verification: some SCOMP examples. Unpublished report,

Odyssey Research Associates, Inc., Ithaca (December 1983).

[15] R. W. Scheifler and J. Gettys. The X window system. ACM Transactions on Graphics 5,

2, (April 1986).

L J

18



k_j
: Append[x_

Specification of A Library

SPECIFICATION Library

LEVEL Top_Level

TYPE

User,

Book,

Book_Title,

Book_Author,

Book_Collection IS SET OF Book,

Titles IS SET OF Book.Title,

Pos_Integer IS TYPEDEF i:INTEGER (i>O)

CONSTANT

Ti%le(Book):Book.Title,

Au%hor(Book):Book_Author,

Library_Staff(User):BOOLEAN,

Book_Limi%:Pos_Integer

DEFINE

Copy_Of(BI,B2:Book) : BOOLEAN ==

Author(B1) = Auzhor(B2)

Title(Bl) = Title(B2)

VARIABLE

Library:Book_Collection,

Checked_Out(Book):BDOLEAN,

Responsible(Book):User,

Number_Books(User):INTEGFA,

Never_Out(Book):BOOLEAN,

DEFINE

Available(B:Book):BOOLEAN ==

B ISIN Library & "Checked_Out(B),

Checked_Out.To(U:User,B:Book):BOOLEAN ==

Checked_Out(B)

& Responsible(B)=U

19



INITIAL

Library = EMPTY

FORALL u:User (Number_Books(u) = O)

k FORALL b:Book ('Checked_Out(b))

INVARIANT

FORALL b:Book(b ISIN Library ->

Checked_Out(b) k "Available(b)

I "Checked_Out(b) k Available(b))

& FORALL u:User(Number_Books(u) <= Book_Limit)

& FORALL u:User,bl,b2:Book(

Checked_Out_To(u,bl)

k Checked_Out_To(u,b2)

k Copy_Of(bl,b2)

-> bl=b2)

TRANSITION Check_Out(U:User,B:Book)

EXIT

Available'(B)

& Number_Books'(U) < Book.Limlt

a IF FORALL Bl:Book (Checked_Out_To'(U,B1) -> 'Copy_Of(B,B1))

THEN

FI

Number_Books(U) BECOMES (Number_Books'(U) + I)

& (Checked_Out(B) BECOMES TRY)

k (Responsible(B) BECOMES U)

(Never_Out(B) BECOMES FALSE)

TRANSITION Return(B:Book)

EXIT

( IF Checked_Our'(B)

THEN Checked_Out(B) BECOMES FALSE

k Number.Books(Responsible'(B))

BECOMES (Number.Books(Responsible'(B)) - I)

FI)

TRANSITION Add_A_Book(U:User,B:Book)

EXIT

( IF Library_Staff(U)

a B "ISIN Library'

THEN Library = Library' UNION {B}

& Checked_Out(B) BECOMES FALSE

Never_Out(B) BECOMES TRUE

20



FI)

TRANSITION Remove_A_Book(U :User ,B:Book)

EXIT

(IF Library_S%aff (U)

& Available' (B)

THEN Library = Library' SET_DIFF {B}

FI)

END Top_Level

END Library

_.._J

21



Appendix B

Specification of a Multiwindow Interface

SPECIFICATION window_interface

INHIBIT /* do not produce correctness conjectures */

LEVEL Top_Level

/* Brent Auernheimer -- 3uly 1990

This is a high-levei specification written using the Aslan

specification language of a window-based

user interface. Mice are not explicitly mentioned.

Note that a ' ('prime') is the old-value operator. That is,

is x is a variable, then x' represents its value before the

application of a transition. An unprimed x represents the

new-value of x.

This user interface is typical of window managers running

on X. One added feature is SPECIAL windows

which cannot be closed (iconified), moved, or covered by

other windows or icons.

Notational conventions -- alphanumeric tokens are lowercase

except for the following:

* Keywords and constants are uppercase.

* Type identifiers begin with uppercase.

,/

TYPE

Windows, Processes, Locations, Sizes, Representations, Display_Levels,

States IS (OPEN, CLOSED, UNUSED),

Layouts IS STRUCI"JRE OF

(location: Locations, size: Sizes, rep: Representations),

Displays IS SET OF Layouts

CONSTANT

NULL_PROCESS: Processes,

INITIAL_OPEN_LAYOUT(Processes): Layouts,

k_S

22



k /
INITIAL_CLOSED_LAYOUT(Processes): Layouts,

INITIAL_STATE(Processes): States,

/_ OVERLAPS is to be true if first ar&nment overlaps the second _/

OVERLAPS(Layouts, Layouts): BOOLEAN,

BACKGROUND: Layouts, /_ vindows must overlap the backgro_md _/

SPECIAL(Windows): BOOLEAN, /_ some windows canaot be covered _/

/_ the smallest display_level is the window closest to the top,

the larEest is the window buried the deepest _/

LESS_OR_EqUAL(Display_Levels, Display.Levels): BOOLEAN

VARIABLE

process(Windows): Processes,

open_layout(Windows): Layouts,

closed_layout(Windows): Layouts,

state(Windows): states,

input_focus(Windows): BOOLEAN,

display: Displays,

display_level(Windows): Display_Levels

DEFINE

/_ DEFINitions are macros used to make state transitions easier to read */

to_top_level(w: Windows): BOOLEAN ==

/* w becomes the topmost window ... _/

FDRALL w2: Windows (

(w "= w2)

-> LESS_OR_EQUAL(dispIay_IeveI(w), display_level(v2))

display_level(w) "- display_level(v2))

/_ all other windows maintain their previous relationship _/

POBALL wl, w2: Windows (

(wl "= w _ w2 "= w) -> (

(LESS_OR_EQUAL(display_level'(vl), display_level'(v2))

-> LESS_OR_EqUAL(display_level(wl), display_level(v2)))

k (LESS.DR_EQUAL(dispIay_IeveI'(v2), display_level'(v1))

-> LESS_OR_EQUAL(display.leveI(v2), display_level(vl))))),

/e note that square brackets are used to select fields from

structure t}_ped variables $/

set_location(w: Windows, s: States, i: Locations): BOOLEAN ==

23



((s = OPEN)
-> FORALL wl: Windows (

(w = wl -> open_layout(w)[location] = 1

open_layout(w) [size] = open_layout' (w) [size]

& open_layout(w) [rep] = open.layout' (w) [rep])

(w "--wl-> open_layout(wl) • open_layout'(wl)))

& NoChange(closed_layout))

& ((s = CLOSED)

-> FORALL .1: Windows (

(w • wl -> closed_layout(w)[location] = i

closed.layout(w) [size] = closed_layout' (w) [size]

R closed_layout(w) [rep] = closed_layout' (w) [rep])

& (w "• wl -> closed_layout(wl) • closed_layout'(.1)))

& NoChange (open_layout)),

set_slze(w: Windows, s: States, st: Sizes): BOOLEAN •m

((s = OPEN)

-> FORALL wi: Windows (

(w = wl -> open_layout(w)[size] • el

& open_layout(w)[location] = open_layout'(w)[location]

& open.layout(w)[rep] = open_layout'(w)[rep])

& (w "= wl -> open_layout(wl) • open_layout'(wl)))

NoChange(closed_layout))

& ((s = CLOSED)

-> FORALL wl; Windows (

(w = wl -> closed_layout(w)[size] • sl

closed_layout(w)[location] = closed_layout'(w)[location]

& closed_layout(w)[rep] = closed_layout'(w)[rep])

(w "• wl -> closed_iayout(,1) = closed_layout'(.1)))

& NoChange(open_layout)),

update_display_close(w: Windows): BOOLEAN ••

(display = display'

SET_DIFF {SETDEF !: Layouts (I • open_layout'(w))}

UNION {SETDEF I: Layouts (i • closed_layout'(w))}),

update_display_open(w: Windows): BOOLEAN =-

display • display'

SET_DIFF {SE_DEF i: Layouts (i - closed_layout'(w))}

UNION {SETDEF i: Layouts (I= open_layout'(w))},

24



update_display_create(w: Windows): BOOLEAN ==

(state(w) = OPEN & (display = display'

UNION {SETDEF i: Layouts (I = open.layout(w))}))

I (state(w) = CLOSED & (display = display'

UNION {SETDEF i: Layouts (I - closed_layout(w))})),

update_display.destroy(w: Windows): BOOLEAN ==

(state(w) = 0PEN _ (display = display'

SET_DIFF {SETDEF i: Layouts (1 - open_layou_'(w))}))

I (state(w) = CLOSED a (display = display'

SET_DIFF {SETDEF i: Layouts (i - closed.layout'(w))})),

update_display.move (w: Windows): BOOLEAN ==

(state'(w) = 0PEN & (display = display'

SET_DIFF {SE_EF I: Layouts (I = open_layout'(w))}

UNION {SETDEF I: Layouts (i = open_layout(w))}))

I (state'(w) = CLOSED & (display = display'

SET_DIFF {SETDEF I: Layouts (I = closed_layout'(w))}

UNION {SETDEF i: Layouts (i = closed_layout(w))}))

INITIAL /* the following assertion defines the initial state of the system */

display = EMPTY

& FORALL w: Windows (

state(w) = UNUSED

& process(w) = NULL_PROCESS

& input_focus(w) = false)

& FORALL p: Processes (

0VERIAPS(INITIAL_0PEN_LAYOUT(p), BACKGROUND)

& OVERLAPS(INITIAL_CLOSED_LAYOUT(p), BACKGROUND))

INVARIANT

/* the following assertion is the critical correctness requirements

that must hold in every state (including the initial state */

FORALL I: Layouts (

1 ISIN display ->

EXISTS w: Windows (

(state(w) = OPEN & 1 = open_layout(w))

I (state(w) - CLOSED _ 1 = closed_layout(w))))

& FORALL I: Layouts (

1 ISIN display -> OVERLAPS(l, BACKGROUND))

& FORALL w: Windows (

25



SPECIAL(w)a state(w) "= UNUSED

-> EXISTS i: Layouts ((i ISIN display

& (i - open_layout(w) i 1 - closed_layout(w)))

FOPALL li: Layouts ((I "= 11) R (111SIN display)

-> "OVERLAPS(II, i))))

/_ the transitions are written to have NoChanEe to the state variables

if they shouldn't be applied. These NoChanEe clauses could be

rewritten to specify error notification and processin E ./

TRANSITION close_window(w: Windows) /e iconify _/

EXIT

state'(w) = OPEN

& "SPECIA£(w)

& state(w) BECOMES cLoSED

& update_display_close(w)

& to_top_level(w)

ALT NoChange

TRANSITION open_window(w: Windows)

EXIT

state'(w) = CLOSED

state(w) BECOMES OPEN

& update_display_open(w)

& to_top_level(w)

ALT NoChange

TRANSITION destroy_window(w: Windows)

EXIT

(state'(w) = OPEN I state'(w) = CLOSED)

& state(w) BECOMES UNUSED

& "SPECIAL(w)

update_display_destroy(w)

ALT NoChange

TRANSITION create(p: Processes)

EXIT

EXISTS w: Windows (

state'(w) - UNUSED

& state(w) BECOMES INITIAL_STATE(p)

k_S

26



k_J
& open_layout(w) BECOMES INITIAL_CLOSED.LAYOUT(p)

& closed_layou%(w) BECOMES INITIAL_DPF2_.LAYOVr(p)

process(w) BECOMES p

& update_display_create(w)

to_top_level(w))

ALT NoChange

TRANSITION shift.focus(w: Windows)

/_ assumes that only one window at a time has input focus and

%hat closed windows can have input_focus _/

EXIT

(sta%e'(w) = OPEN [ s%ate'(w) = CLOSED)

FORALL w1: Windows (input_focus(w1) = (wl = w))

ALT NoChange

TRANSITION move(w: Windows, i: Locations)

EXIT

('SPECIAL(w)

update_display_move(w)

& (((sta%e'(w) = OPEN)

se%_loca%ion(w, s%a%e'(w), i)

OVERLAPS(open_layout(w), BACKGRDUND)

& "EXISTS wl: Windows (

SPECIAL(wl) _ s%ate'(wl) "= UNUSED

& OVERLAPS(open_layou%(w), open_layou%'(wl))))

((s%ate'(w) = CLOSED)

& set_loca%ion(w, s%ate'(w), I)

OVERLAPS(closed_layout(w), BACKGROUND)

"EXISTS wl: Windows (

SPECIAL(wl) _ state'(wl) "= t_(IJSED

0VERLAPS(closed_layout(w), open.layout'(wl))))))

ALT NoChange

TRANSITION resize(w: Windows, s: Sizes)

EXIT

(scate'(w) = OPEN) & "SPECIAL(w)

& "EXISTS w1: Windows(SPECIAL(wl) _ (sta%e'(wl) "= UNUSED)

0VERLAPS(open_layout(w), open_layou%'(wl)))

V

27



set_size(w, state'(.), s)

ALT NoChange

TRANSITION to_foreground(w: Windows)

EXIT

to.top_level(w)

& state'(w) "= UNUSED

& "EXISTS wl: Windows(SPECIAL(.1) R (state'(.1) "- UNUSED)

((state'(.) = OPEN) & (OVERLAPS(open_layout'(.), open_layout'(wl)))

I (state'(.) - CLOSED) & OVERLAPS(closed_layout'(.), open_layout'(.1))))

ALT NoChange

END Top_Level

END window_interface

28


